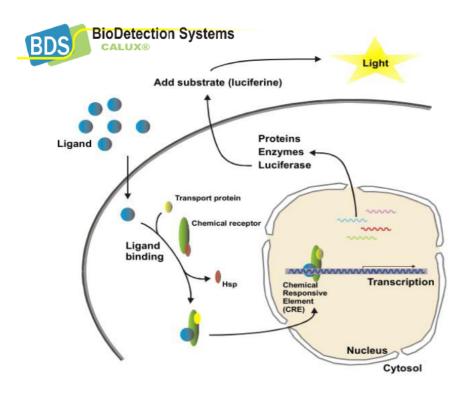


DR CALUX

Dioxin Receptor Chemically Activated LUciferase gene eXpression


Analyse de la contamination des denrées alimentaires

DR CALUX, principe

Le principe du CALUX consiste à utiliser des cellules animales modifiées de façon à induire une réponse (transcription) spécifique (luminescence) lors l'activation de récepteurs spécifiques au cours d'une exposition à une substance (ligand).

Dans le cas du DR CALUX, le récepteur utilisé est le AhR, impliqué dans la réponse métabolique des mammifères aux expositions aux composés dioxines et dioxin-like

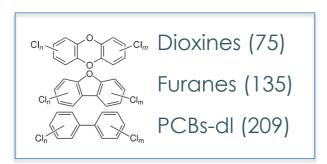
DR CALUX

Dioxin Chemically

Receptor Activated

LUciferase gene

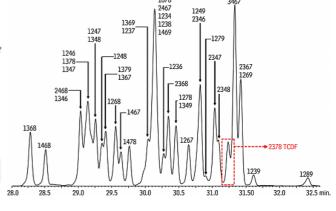
eXpression


Cette technique de biologie moléculaire (reporter-gene) est une méthode élégante, permettant des analyses de screening et d'évaluation des potentiels effets toxiques applicable à de nombreuses substances en fonction des récepteurs et CRE (Chemical Response Element) impliqués. Ainsi, la mesure des concentrations équivalentes TCDD des composés dioxines et dioxin-like est possible, ainsi que la mesure de divers effets de perturbation endocrinienne (oestrogène, androgène, thyroïdien, obésogènes), ou d'autres réponses telle que le stress oxydatif.

Analyse traditionnelle des composés dioxines et dioxin-like

L'analyse traditionnelle des dioxines et composés « dioxin-like » nécessite l'identification de nombreuses substances par des méthodes complexes et onéreuses de chromatographie et spectrométrie de masse haute résolution (GC-HRMS).

pg eq TCDD / gr échantillon


Le résultat est exprimé en concentration équivalente dioxine TCDD

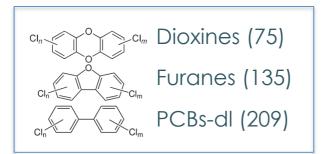
Compound	WHO 1998 TEF	WHO 2005 TEF
Chlorinated dibenzo-p-dioxins		
2,3,7,8-TCDD	1	1
1,2,3,7,8-PeCDD	1	1
1,2,3,4,7,8-HxCDD	0.1	0.1
1,2,3,6,7,8-HxCDD	0.1	0.1
1,2,3,7,8,9-HxCDD	0.1	0.1
1,2,3,4,6,7,8-HpCDD	0.01	0.01
OCDD	0.0001	0.0003
Chlorinated dibenzofurans		
2,3,7,8-TCDF	0.1	0.1
1,2,3,7,8-PeCDF	0.05	0.03
2,3,4,7,8-PeCDF	0.5	0.3
1,2,3,4,7,8-HxCDF	0.1	0.1
1,2,3,6,7,8-HxCDF	0.1	0.1
1,2,3,7,8,9-HxCDF	0.1	0.1
2,3,4,6,7,8-HxCDF	0.1	0.1
1,2,3,4,6,7,8-HpCDF	0.01	0.01
1,2,3,4,7,8,9-HpCDF	0.01	0.01
OCDF	0.0001	0.0003
Non-ortho-substituted PCBs		
3,3',4,4'-tetraCB (PCB 77)	0.0001	0.0001
3,4,4',5-tetraCB (PCB 81)	0.0001	0.0003
3,3',4,4' 5-pentaCB (PCB 126)	0.1	0.1
3,3',4,4',5,5'-hexaCB (PCB 169)	0.01	0.03
Mono-ortho-substituted PCBs		
2,3,3',4,4'-pentaCB (PCB 105)	0.0001	0.00003
2,3,4,4',5-pentaCB (PCB 114)	0.0005	0.00003
2,3',4,4' 5-pentaCB (PCB 118)	0.0001	0.00003
2',3,4,4' 5-pentaCB (PCB 123)	0.0001	0.00003
2,3,3',4,4',5-hexaCB (PCB 156)	0.0005	0.00003
2,3,3',4,4' 5'-hexaCB (PCB 157)	0.0005	0.00003
2,3',4,4' 5,5'-hexaCB (PCB 167)	0.00001	0.00003
2,3,3',4,4' 5.5'-heptaCB (PCB 189)	0.0001	0.00003

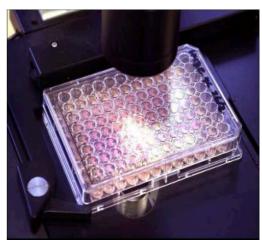
Summary of WHO 1998 and WHO 2005 TEF Value

Estimation de la toxicité équivalente totale relative à celle de la dioxine par l'application des coefficients de toxicité par congénère

Profil GC-HRMS d'un extrait de cendres volantes. © Restek

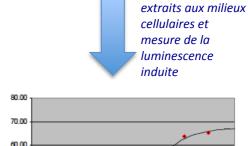
Bold values indicate a change in TEF value.

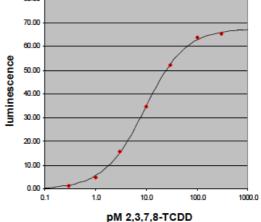



DR – CALUX, l'option issue de la biologie moléculaire

L'analyse CALUX propose d'évaluer la concentration des composés dioxin et dioxin-like par une mesure directe de leur activité sur des récepteurs endogènes.

L'avantage ? Une réponse directe en équivalent toxique TCDD!



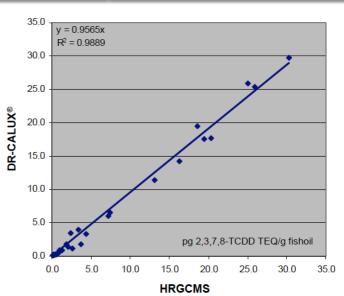


Le résultat est exprimé en concentration équivalente dioxine TCDD

Exposition des

Calibration luminescence vs conc eq TCDD. © BDS

DR CALUX vs GC-HRMS

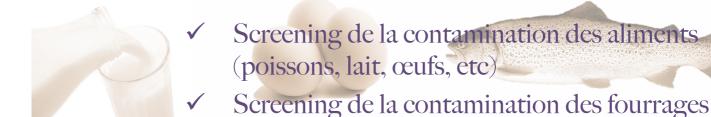

Coût d'analyse	Env 300 CHF	Env 1000 CHF
Durée d'analyse	3-5 jours	5-10 jours
Résultats	Concentration totale eq TCDD par mesure directe de l'activité	Concentration de chaque congénère Concentration totale eq TCDD
Assurance qualité	ISO:CEI 17025:2005	ISO:CEI 17025:2005

Les réponses DR-CALUX et GC-HRMS sont parfaitement corrélées sur de nombreuses matrices (terre, food, huiles, sang, etc)

Comparaison DR CALUX vs GC-HRMS Concentrations de dioxine (PCDDs, PCDFs et PCBs – dl) dans des huiles de poisson.

Source: BioDetection Sytems

DR CALUX, applications


Santé au travail

- Monitoring biologique des expositions (analyse de sang)
- Analyse de la contamination des surfaces (engins, filtres, EPI, etc)

Environnement

- ✓ Screening de la contamination des terres
- ✓ Screening de la contamination des eaux

Denrées alimentaires

Sensibilité

 $0.3\ ps^{\text{(absolu par \'echantillon)}} \\ \text{eq TCDD}$

Les autres CALUX

CALUX assays currently available:

Nuclear receptors		Signaling pathways	
name	endpoint	name	endpoint
DR CALUX	dioxins	NFKB CALUX	inflammation
PAH CALUX	PAHs	p21 CALUX	DNA damage
ERα CALUX	estrogens	Nrf2 CALUX	oxid. stress
ERβ CALUX	estrogens	p53 CALUX	DNA damage
AR CALUX	androgens	TCF CALUX	carcinogenesis
PR CALUX	progestins	AP1 CALUX	stress
GR CALUX	glucocortocoid	HIF1α CALUX	hypoxia
TRβ CALUX	thyroids	ESRE CALUX	ER stress
RAR CALUX	retinoids	Cytotox CALUX	cytotoxicity
PPARy CALUX	obesogens		
PPARα CALUX	obesogens		
PPAR8 CALUX	obesogens		
PXR CALUX	xenobiotics		
LXR CALUX	oxysterols		

Pour tout complément d'information, contactez-nous :

lucie.dubugnon@laboicc.ch 15, rue du Midi 1003 Lausanne +41 (0)21 311 31 31

Hygiène du travail Toxicologie industrielle

www.TOXPRO.ch contact@toxpro.ch +41 (0)76 581 04 65